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1. INTRODUCTION
Let O,ll,...,lk be k + 1 independent populations where wi has the

associated distribution function F(x,oi) and density f(x,e i)'with the un-

known parameter ei belonging to an interval e of the real line R. We are

generally interested in two types of goals. Goal I is to select a sub-

set (preferably small in size) of the k populations wl""'nk that will

contain the best (suitably defined) among them and Goal II is to select

from 7rl,..., rk (k experimental treatments) those populations, if any,

that are better (to be defined) than w0 which is the control or standard

population.

In the recent years, several authors have investigated construction

of optimal subset selection rules and also established optimality prop-

erties of known selection rules for specific cases. Some of the impor-

$" tant papers in these directions are Berger and Gupta [1], Bickel and

Yahav [2], Bj~rnstad [3), Chernoff and Yahav [4), Goel and Rubin [5],

Gupta and Hsiao [6], Gupta and Hsu [7], Gupta and Huang [8,9], Gupta

and Kim [12,13], Gupta and Miescke [14], and Miescke [17). These in-

vestigations generally deal with the symmetric case of equal sample

*The research of the first two authors was supported by the Office of

Naval Research Contract N00014-75-C-0455 at Purdue University. Repro-
duction in whole or in part is permitted for any purpose of the United
States Government.
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sizes. There have been some investigations in the unequal sample sizes

case but these ;e concerned with ad hoc and heuristic procedures and

are not generally successful in establishing the least favorable configu-

ation (LFC) for the probability of a correct decision. For many classical

procedures in the literature for selecting a subset containing the best,

the LFC turns out to be 61 a . k. This provides the motivation for

seeking rules which are optimal in some suitable sense in a neighborhood

of every equiparameter point. When we are comparing these populations

with w0, the local optimality is related to the ability to reject the

populations that are inferior to w0 and select those that are superior

in a suitable neighborhood of selected parametric configurations.

Though some early investigation of locally optimal subset selection

rules based on ranks appeared in Nagel (18], such rules were not investi-

gated further until recently. Some locally optimal subset selection

rules based on ranks were derived by Gupta, Huang and Nagel [11] and

Huang and Panchapakesan (16]. The first of these papers considered Goal

I whereas the latter considered both Goals I and II. Though these rules

were based on ranks it was assumed that the functional form of the den-

sity is known; the justification for seeking rules based on ranks comes

from the usual robustness considerations in that the ranks are insensi-

tive to outliers and there could be possible deviations from the model.

Gupta, Huang and Nagel (11] maximized the probability of a correct selec-

tion In the neighborhood of any equiparameter point whereas Huang and

Panchapakesan (16] used for Goal I the criterion of strong monotonicity

in the same type of neighborhood and for Goal II a local optimality con-

dition which reflects the sensitivity of the rule when all but one popu-

lation are not distinctly superior and the remaining one is close to

others but distinctly superior.

, • ........ I- m !
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The present paper derives a locally optimal subset selection rule

for Goal II based on parametric inference type statistics with no assump,

tion of equal sample sizes. In Section 2, we state a local optimality

condition and prove the main theorem giving the construction of a locally

optimal rule. Section 3 deals with the applications of the general re-

sult to the following special cases: (a) normal means comparison - common

known variance, (b) normal means comparison - common unknown variance,

(c) gamma scale parameters comparison - known (unequal) shape parameters

and (d) regression slopes. In all these cases, the locally optimal rule

is obtained based on samples of unequal sizes.

Finally, fbr detailed discussions on optimality and other aspects of

multiple decision problems and general decision theoretic approach, the

reader is referred to Gupta and Huang (10] and Gupta and Panchapakesan

[15].

2. DERIVATION OF THE RULE

Let {XtJI, j=l,...,n t, denote the random sample from wi, 1=0,l,...,k.

Our goal is to construct a rule to select all populations that are better

than the control. The selection rule will depend upon the observations

through the statistics T1O, l-l,...,k, where T1j is suitably defined to

indicate the difference between wt and w. For fixed no,n i,...,nk, we

assume that Ttj has a density function g j(ttj depending on the param-

eter r." The parameter Tj is a measure of the 'separation' of wt from

'9J. Also, rtt is the same for all I and this common value is denoted by

T*. For example, in the location case, we can take Ttj a et - Aj giving 0

*- 0. On the other hand, if e is a scale parameter, we can take

tij " 1t/A so that T* -1

sAvailability Codes
A__--vail and/or

Dist Special
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Now, we define population w, to be superior to the control if

Tt0 > T* and inferior otherwise. Let

3 { { I!. -(T lO ... TkO) , r10 ER, l,...,k} ,

0 • {TITIO-...=n kO*T*)

i = {T _Ti0 > T*'Tj 0  i•

Define 6 = (611...-16k) where 6(li<<k) is a test function for H0 : -rEa0

vs. H1 : .T Ei-9

2.1. Optimality Requirement. Let 0 < yi < 1 (i<i<k) be specified.

Define

(2.1) S- (_IE *(6i)yi, 1 <k <k)

We wish to derive a rule 6E S which

k
(2.2.) maximizes I at0 E (6)

a i ITZT*

among all the rules in S. We note that A(S means that the error prob-

abilities are controlled and that the condition (2.2) amounts to maximiz-

ing the efficiency in a certain sense of the rule in picking out the

superior population in the direction of each component at r* - (T*,...,T*).

Let hT (t) denote the joint density of T = (TIo,...,Tko) with respect

to a a-finite measure v. Let h _It) denote the density h_ Ct) when -_ = _*

and h(')(t) denote the partial derivative a h() evaluated at r *

Finally, we need to assume certain regularity conditions, namely, that

h,(t) Is continuously differentiable with respect to each component of

and i ht) is integrable. Under these regularity conditions, it

is My -to see that

2.Lh .du

"C .
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where j, is the sample space of T =(T10 ,...,TkO).

Summarizing the above discussion, we are seeking a rule 6 (t)

such that

(2.3) j 61(-t)h,(t)d(t) = y, t-1,..,k

and it maximizes, among all rules satisfying (2.3), the expression

k

theore of thi section.j~u~

2.2. A Locally Optimal Rule. We now state and prove the main

theorem of this section.

Theorem 2.1. Under all the assumptions stated previously, a rule

060(t) which satisfies (2.3) and maximizes (2.4) among all rules satisfy-

ing (2.3) is given by

(2.5) 60t) = i f h(t) = cihT*(t)

0<

where xi and c1 such that
(2.6) f 0(t)h = yt' i=l,...,k .

Proof. The proof is straightforward by noting that for any 6

satisfying (2.3) we have
mk

(12.7) 1k (tl-6 (t)(hllltl-cih ,(1tl)d(t)_ !-.

LA-
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3. SPECIAL CASES

In this section, we apply the result of Section 2 to several special

cases.

Case A: Normal Means Comparison; Comon Known Variance. Here wi

is N(e1,o0), where 2 is known. Let I be the sample mean based on n

independent observations from 1 , i=O,1,...,k. Take Tio = (i -io)/0O

and TiO = (e1-e0)/o0 . Of course, T* = 0. Then the joint density

h (t) of T = (T1o,... Tko) is a multivariate normal distribution with

mean vector . = (TlO9. ""TkO) and covariance matrix A = (Xi.,) given by

1 (1+ 1  for i = j

(3.1) no =I

- for i t jno

where a1 = ni/n O, i=1,...,k. Thus

(3,2) h(t) = (21r)- k/ 1-1/2 exp[- A _

It is easy to verify that h -)(. (t)

"-( - t)i= (^-

a.no( T-,- )Iti(l+ a.te)-, ajt),

-lj 1

where (A'It)1 denotes the ith coordinate of the vector (A'.t) and in sum-

mations involving the a. such as I a., the subscript ranges from 1 to

k subject to any exceptions stated. The locally optimal rule a is now

given by

iV
) e



7

I if 1 tj a .c*
~ ~~~(3.3) () i t

0 otherwise

where ct is determined by

.I
(3.4) P (T. ~~c'

Now, using the fact that, when T = _*(=0), (A T) is normally distribut-

ed with mean zero and variance n0at(l+ j a,)/(1+1Ea,), it is easy to

see that

(3.5) c* = o 1 (1 -yi)/(l+-ax)/noai(l+ a- a
0t

= -1 (1-yi)//n(N-n)

where N = no + n, + ... + nk and o denotes the standard normal distribu-

tion function.

Remark 3.1. The Individual selection probability 69(t) in (3.3)

can also be expressed as

. 1 k
if tI  Nni j nt > ct=0

... j#

0 otherwise

In this form, it can be recognized as a weighted average type rule.

When the sample sizes are equal, it is the usual average type rule and

selects if and only if tt - !c .

Case B: Normal Means Comparison; Common Unknown Variance. Unless

stated otherwise, the notations of Case A will apply here. Let Si denote

the sample variance (divisor n- 1) based on the sample from ir Then

'I'LI
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2 k k
S= (ni-1)S / (no-1) is the usual pooled estimator of the common

i s0

unknown variance a2 on v - N - k - 1 degrees of freedom. Define

Yi (Xi-O) and Tio Y/Sp, i-l,...,k. ThenT - (Tlo,...,Tko) has a

multivariate normal t distribution and its density h(t) can be written

in an integral form as follows:

w v+k -

(3.6) hT() T A e V w - ,

where T'= ('lO,...,TkO), Tio = (ei-eO)/0, i=l,...,k, A0 is the appropri-

ate constant, and A = (xtn) is the same as in Case A given by (3.1).
Now, lv+k+l v+k

Now, letting Cvk = /2r(.F-F) , it is easy to verify that

h+.( T ( _/h(_). k (A-1 1t)t/vt 1 ^1_

= c,kl^l)t s p ^l

nY(N-n i N-n1  jl njyj

ni(N-n1 ) 2)s' =CV k  N (y's ,say,9

where ( =YI""'Yk)"

Thus, the locally optimal rule i is given by

o1I if #(,s2) c

(3.7) 0 2. S ) ,,

0 otherwise

where ct is determined by

(3.8) P ((1S 2!.c) -" "

Since njY has a normal distribution with mean zero and

:414
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variance a 2 N/ni(N-n1) and M 2 tY'A -1Y)/o 2 has a chi-square distribution

with N - 1 degrees of freedom, it follows that *(Y,S )2N a
-p /n4n1(- 1) ha

a t-distribution with N - I degrees of freedom. So we see from (3.8)

that

(3.9) C t Ni N
I~~~~~* 1 /n !nj

where t YINldenotes the upper lOipercent point of the t-distribution

with N - 1 degrees of freedom.

Case C: Gammia Scale Parameters Comparison: Unequal (Known) Shape

L Parameters. Let r. i (i=O,. .. ,k) be a gamma population with density

(3.10) f(x;e1, 1  exp{-x/o.1, x 5 0, e1 > a,
r(Vi e i

where the shape parameters v.i are known. We take 'riO = e/ so that

1.in Let X i j=l,...,ni, be independent observations from wiand

dein T i1,... ,k. The joint density of T10 . T~ is

easily derived to be

(3.11) h~t r(M) 1o n r(nv 1

k nivi-l
It.

kk

where M I nivi From this we get
it0
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(3.12) h$ tk niv
- - no+ l t

Mni I

nnx
k nlvi

j=O

Thus the locally optimal rule 6_ is given by

k
I if n iRI/ x j >c

(3.13) 0= - --

( 0 otherwise

where the constant c is determined by

I n..
(3.14) P ', kn 'l  c() -- y.

- j~o .J J
When T = T*, n.X. has a gamma distribution with parameters e and nivi.

However, the probability in (3.14) is independent of e. It is known

k
that nili/ 0 njX has a beta distribution with parameters nlv i andj =0
M - niv i, denoted by B(niv i M-nivi). Thus ct is the upper 1Oy percent-

age point of B(niv i M-nivi) and can be obtained from tables of incomplete

beta function.

Remark 3.2. It should be first pointed out that the above prob-

lem includes as a special case the problem of comapring normal vari-

ances based on samples of unequal sizes. It also includes the problem

of comparing scale parameters ei of Weibull populations which has a com-

mon known shape parameter s. If X, J=l,...,n i , are the sample obser-

vations from wi, then we can transform these by YiJ = X~B into sample

-" " " '-"-"". . .. . .. ..' . .. "<' : -" ' -"- " = ' '- : ' -"-• rll ....... . FI ' iI
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observations from an exponential distribution with mean x eq. Thus

it is a special case of the gamma problem.

Case D: Comparison of Regression Slopes. Let wi denote a simple

linear regression model

(3.15) Y = ai + Bix + C

where e - N(O,a2) and a2 is unknown. Let {x ij.,Yij}, j=l,...,n i, denote

the sample data from (3.15). Define Ti0 = (8i-80)/o, i=l,...,k. The

least squares estiamtors of ai and 8i are given by &i = i - Rii andS2 22
i = S xiY/ xi, where xi = Exij/ni, Vi = EYi /ni, S2  = 1(x i i)2  and

SxiY = E(x i- i) (Yij-Vi). All the summations are over j going from 1 to ni.

The usual pooled unbiased estimator of a2 is S =

k na k
0 (Yiji-I-ii lj) 2/ (nl-2). It is well-known that Q = uS /o2

i j=0 k

has a chi-square distribution with v I (n -2) degrees of freedom.
i=0 1

Define Zi  i - and TiO = Zi/S p, i1l,...,k. Then the joint density

hT (t) of T = (T10,... ,TkO) is the same as the expression in (3.6) but

with Ti0  (si-ao)/o and A (Aij) given by

+ , i=j

(3.16) =
IilsT.- , ir j

x0

2 2where a1 - i/S0, ll,...,k. It is now easy to see that the locally

optimal rule 68 is given by

9 I' !
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SI if *fz;S2 9.. $S2) c
(3.17) O" " Xk

0 otherwise

where z = (z,...,Zk) and

zs~

(3.18) *(Z;Sx20 ,7S 2 ) =. xj

The constant c* is determined by

(3.19) P,(T(Z;S ,S .... S c) yi

and by appealing to the result of Case B, we get

(3.20) 0, t 1 xi
I ON-k-2 Sz 1+

xi sX0+~ J~i

- IF
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